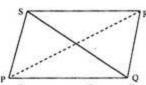

যশোর বোর্ড-২০১৭


সমাধান (সৃজনশীল)

91 (季)

চিত্রে, PQRS সামান্তরিকের PR ও QS কর্ণছয় পরস্পর O বিন্দৃতে ছেদ করে।

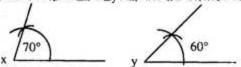
(4)

বিশেষ নির্বচন : মনে করি, PQRS একটি সামান্তরিক এবং PR ও QS এর দুইটি কর্ণ। প্রমাণ করতে হবে যে, (i) PQ = RS, PS = QR

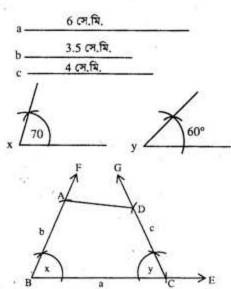
(ii) $\angle PQR = \angle PSR$, $\angle QPS = \angle QRS$

थ्यभाग :

(91)

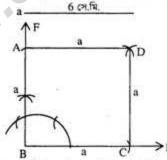

-50	ধাপ	যথাৰ্থতা
(7)	PQ RS এবং QS এদের ছেন্ক	(একান্তর কোপ সমান)
(2)	∴ ∠PQS = ∠QSR আবার, PS QR এবং QS এদের ছেদক	123327473337300
90.55	সূতরাং ∠PSQ = ∠SQR	[একান্তর কোণ সমান]
(၁)	এখন ΔPQS ও ΔQRS এ	
	$\angle PQS = \angle QSR$	[ধাপ-১ হতে]
	$\angle PSQ = \angle SQR$	[ধাপ-২ হতে]
	এবং QS সাধারণ বাহু	
	$\therefore \Delta PQS \cong \Delta QRS$	[কোণ-বাহ-কোণ উপপাদ্য]
	অতএব, PQ = RS, QR = PS	- 00
	এবং ∠QPS = ∠QRS	
	অনুরূপভাবে প্রমাণ করা যায় যে,	
	$\Delta PSR \equiv \Delta PQR$	
	সুতরাং ∠PQR = ∠PSR	
	∴ ∠PQR = ∠PSR, ∠QPS = ∠QRS (প্রমাণিত)	

500


বিশেষ নির্বচন : উদ্দীপকের PQRS সামান্তরিকের চারটি বাছই পরস্পর সমান হলে তা একটি রম্বস হয় এবং PQRS রম্বসের PR ও QS কর্ণছয় পরস্পরকে O বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, PO = OR, QO = OS এবং ∠POQ = ∠QOR = ∠ROS = ∠SOP = 1 সমকোণ। প্রমাণ :

	ধাপ	যথাৰ্থতা
(2)	রম্বস একটি সামান্তরিক। সুতরাং PO = OR, QO = OS	সমপ্রেরিকের কর্ণকঃ পরম্পরকে সমন্বিপতিত করে
(২)	APOQ ও AQOR এ PQ = QR PO = OR এবং OQ = OQ অতএব, APOQ ≅ AQOR ∴ ∠POQ = ∠QOR	(রহসের বহুকলো সমান (ধাপ-১ হতে) (সাধারণ বাহ) (বাহু-বাহ্-বাহ্ উপপানঃ)
(0)	∠POQ + ∠QOR = 2 সমকোণ। ∴ ∠POQ = ∠QOR = 1 সমকোণ অনুরূপভাবে, প্রমাণ করা যায় যে, ∠ROS = ∠POS = 1 সমকোণ ∴ ∠POQ = ∠QOR = ∠ROS = ∠SOP = 1 সমকোণ। (প্রমাণিত)	

৮। (ক) উদীপকে উল্লেখিত ∠x ও ∠y নিমে আঁকা হলো এবং চিহ্নিত করা হলো:


(খ)

বিশেষ নির্বচন : একটি চতুর্ভুজের তিনটি বাহু যথাক্রমে a=6 সে.মি., b=3.5 সে.মি., c=4 সে.মি. এবং বৃহত্তম বাহু সংলগ্ন দুইটি কোণ $\angle x=70^\circ$, $\angle y=60^\circ$ দেওয়া আছে। চতুতুর্জটি আঁকতে হবে।

অঙ্কন : (১) যেকোনো রশ্মি BE থেকে BC = a নিই।

- (২) BC রেখার B ও C বিন্দৃতে যথাক্রমে ∠x ও ∠y এর সমান করে ∠CBF ও ∠BCG আঁকি।
- (৩) BF থেকে BA = b এবং CG থেকে CD = c কাটি।
- (8) A, D যোগ করি। তাহলে, ABCD-ই উদ্দিষ্ট চতুর্ভুঞ্জ।
- (গ) উদ্দীপকে উল্লেখিত বৃহত্তম বাহু a = 6 সে.মি.।

বিশেষ নির্বচন : মনে করি, বর্গের একটি বাহুর দৈর্ঘ্য a=6 সে.মি. দেওয়া আছে । বর্গটি আঁকতে হবে ।

অঙ্কন : (১) যেকোনো রশ্মি BE থেকে BC = a নিই।

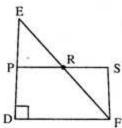
- (২) B বিন্দুতে BF ⊥ BC আঁকি।
- (৩) BF থেকে BA = a নিই।
- (৪) A ও C বিন্দৃৎয়কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে ∠ABC এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। তারা পরস্পর D বিন্দৃতে ছেদ করে।
- (৫) A, D ও C, D যোগ করি। তাহলে, ABCD-ই উদ্দিষ্ট বর্গ।
- (ক) দেওয়া আছে, সমকোণী ত্রিভুজের ভূমি 4 সে.মি.

এবং " " উচ্চতা 5 সে.মি.

Ans : 10 বর্গ সে.মি.।

(4)

বিশেষ নির্বচন : মনে করি, ΔDEF এর $\angle D=1$ সমকোণ এবং অভিভূঞ EF=c, DE=b, DF=a+ প্রমাণ করতে হবে যে, $EF^2=DE^2+DF^2$ অর্থাৎ, $c^2=b^2+a^2$.


আছন : D বিন্দু থেকে অতিভুজ EF এর উপর DH লম অন্ধন করি। EF অতিভুজ H বিন্দুতে d ও e অংশে বিভক্ত হলো।

https://teachingbd24.com

প্রমাণ :

প্রত্যেক সমকোণ মাধারণ কোণ
15371 - 143 1147
মাধারণ কোণ
নুইটি জিল্প সদৃশকোণ
লৈ এদের অনুরূপ চহতলো সমানুপাতিক]
1.0
5.6
উভয় সমকোণী বিভূজ এবং (E সাধারণ কোণ)
1.000 P. 1.0
(i) ও (ii) যোগ করে
∵ e + d = c +
200

(গ)

বিশেষ নির্বচন : ΔDEF এ $\angle D=1$ সমকোণ এবং P ও R যথাক্রমে DE ও EF এর মধ্যবিন্দু । P, R যোগ করি ।

প্রমাণ করতে হবে যে, PR \parallel DF এবং PR = $\frac{1}{2}$ DF.

জন্ধন : PR কে S পর্যন্ত বর্ধিত করি যেন PR = SR হয়। S, F যোগ করি। প্রমাণ :

ধাপ	যথাৰ্থতা
(১) ΔΕΡR ও ΔRSF এর মধ্যে ER = FR PR = SR ∠ERP = ∠SRF ∴ ΔΕRP ≡ ΔSRF ∴ ΔΕΡR = ∠RSF এবং ∠PER = ∠SFR ∴ ΕΡ SF এবং ΕΡ = SF বা, ΕΡ = PD = SF এবং PD SF ∴ PD ও SF পরস্পর সমান ও সমান্তরাল। ∴ PDFS একটি আয়ত। কারণ ∠D = এক সমকোণ।	ি R, EF এর মধ্যবিন্দৃ] আছন অনুসারে [বিপ্রতীপ কোগ] [বাহু-কোল-বাহু উপপাদ্য
∴ PS ও DF পরস্পর সমান ও সমান্তরাল। ∴ PR DF (২) আবার, PS = DF বা, PR + SR = DF বা, PR + PR = DF বা, 2PR = DF ∴ PR = \frac{1}{2} DF ∴ PR DF এবং PR = \frac{1}{2} DF (Showed)	[∵ PR = SR]

ঘ-বিভাগ : পরিসংখ্যান

১০। (ক) উদ্দীপকের উপাত্তের, সর্বোচ্চ নম্বর = ৮৩ এবং সর্বনিম নম্বর = ±:

শ্ৰেণি ব্যবধান = ৫

∴ শ্রেণি সংখ্যা = পরিসর শ্রেণি ব্যবধান = ৩৯ ৫ = ৭.৮ = ৮ (পূর্ণসংখ্যাহ
উত্তর : শ্রেণি সংখ্যা ৮টি । (খ) উদ্দীপকের উপাত্ত হতে গড় নির্ণয়ের সারণি নিমূরপ :

প্রাপ্ত নম্বর	শ্ৰেণি মধ্যমান (x _i)	ট্যালি চিহ্ন	গণসংখ্যা (f _i)	f _i x _i
86 - 89	89	- 11	2	86
eo - e8	@२	18	۰	১৫৬
QQ - Q5	64	NI	Q	- 526
৬০ – ৬৪	৬২	IN/ I	৬	৩৭২
৬৫ – ৬৯	৬৭	1111	8	২৬৮
90 - 98	92	1111	8	266
90-95	99	111	9	২৩১
po – p8	৮২	111	۰	289
k = b			n = 00	$\sum f_i x_i = \lambda \delta 8$

:. পড়,
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i = \frac{5}{60} \times 5580$$
= ৬৪.৬৬৬৬৬....
= ৬৪.৬৭ (প্রায়)

উত্তর : ৬৪.৬৭ (প্রায়)।

(গ) উদ্দীপকের উপাত্তসমূহ মানের ক্রমানুসারে উর্প্রক্রমে সাজানো হলো : 8৫, 8৮, ৫১, ৫৩, ৫৪, ৫৫, ৫৬, ৫৭, ৫৮, ৫৮, ৬২, ৬৩, ৬৩, ৬৪, ৬৪, ৬৪, ৬৫, ৬৭, ৬৮, ৬৯, ৭০, ৭০, ৭২, ৭৪, ৭৫, ৭৭, ৭৮, ৮০, ৮২, ৮৩।

মধ্যক নির্ণয় : এখানে, সংখ্যাগুলোর মোট সংখ্যা, $n = \infty$ (জ্ঞাভূ সংখ্যা)

∴ মধ্যক =
$$\frac{\frac{60}{2}}{2}$$
 তম ও $\left(\frac{60}{2} + 5\right)$ তম পদ দুইটির মানের যোগফল
$$= \frac{56}{2}$$
= $\frac{68 + 68}{2} = \frac{525}{2} = 68$

় মধ্যক ৬৪

প্রচুরক নির্ণয়: উপাত্তলোর উপস্থাপনায় ৬৪ আছে ৩ বার, ৫৮, ৬৩ ও ৭০ আছে ২ বার এবং বাকি নম্বরগুলো ১ বার করে আছে। এখানে, ৬৪ আছে সর্বাধিক ৩ বার। সূত্রাং উপাত্তলোর প্রচুরক ৬৪।

উত্তর: মধ্যক ৬৪ এবং প্রচূরক ৬৪।

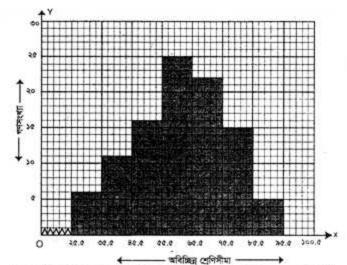
- ১১। (ক) কেন্দ্রীয় প্রবণতার পরিমাপ ৩টি। যথা:
 - (১) গাণিতিক গড় বা গড়;(২) মধ্যক ও (৩) প্রচুরক।

(খ) উদ্দীপকের সারণি হতে গড় নির্ণয়ের সারণি নিমুরূপ:

প্রাপ্ত নম্বর	শ্রেণি মধ্যমান (x,)	গণসংখ্যা (f _i)	f _i x _i
26-00	90.0	6	20-0
७ ७ − 8€	80.0	77	880.0
85-00	0.00	36	pop
৫৬ – ৬৫	9.00	56	3032.0
৬৬ – ৭৫	90.0	22	2007
95-50	\$0.00	20	2.09.0
p9-90	2.06	Q .	802.0
k = 9		n = 200	$\sum f_i x_i = 33300$

∴ গড়,
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i$$

$$= \frac{3}{300} \times 3300$$


$$= 33.8$$

উত্তর : ৬১.৬

(গ) উদ্দীপকের সারণি হতে আয়তলেখ অস্কনের সারণি নিমুদ্ধপ:

প্রাপ্ত নম্বর	অবিচ্ছিন্ন শ্রেণিসীমা	গণসংখ্যা
२७ – ७४	20.0 - 00.0	৬
0 5 − 8¢	90.0 - 80.0	77
86-00	80.0 - 00.0	20
26 – 95	00.0 - 60.0	20
৬৬ – ৭৫	60.0 - 90.0	સ્ સ
96-60	90.0 - 60.0	24
চও – ৯৫	ba.a - pa.a	Q

https://teachingbd24.com

ছক কাগজের ১ ঘর সমান শ্রেণি ব্যবধানের ২ একক ধরে x –অক্ষে শ্রেণি ব্যবধান এবং ছক কাগজের ১ ঘর সমান গণসংখ্যার ১ একক ধরে y-অঞ্চে গণসংখ্যা নিবেশন স্থাপন করে গণসংখ্যা নিবেশনের আয়তলেখ আঁকা হলো। x-অক্ষের মূলবিন্দু ০ থেকে ২৫.৫ ঘর পর্যন্ত ভাতা চিহ্ন দিয়ে আগের ঘরগুলো বিদ্যমান বোঝানো হয়েছে।

যশোর বোর্ড-২০১৭ সমাধান (বহুনির্বাচনি)

301 (本)

ব্যাখ্যা : ত্রিভুজের ভূমি ১.৫ মিটার

এবং উচ্চতা ৮০ সে.মি. বা,
$$\frac{৮০}{২০০} = \frac{8}{\alpha}$$
 মিটার

∴ ত্রিভুজটির ক্ষেত্রফল =
$$\frac{3}{2}$$
 × ভূমি × উচ্চতা
= $\frac{3}{2}$ × ১.৫ × $\frac{8}{6}$ বর্গমিটার
= $\frac{9}{6}$ বর্গমিটার = ০.৬ বর্গমিটার

22 1 (4)

ব্যাখ্যা:
$$x = p + \frac{1}{p}$$
, $y = p - \frac{1}{p}$
 $\therefore (x + y)^2 = (p + \frac{1}{p} + p - \frac{1}{p})^2 = (2p)^2$:

$$\therefore (x + y)^2 = (p + \frac{1}{p} + p - \frac{1}{p})^2 = (2p)^2 = 4p^2$$

251 (季)

ব্যাখ্যা : দেওয়া আছে,
$$a^4 + \frac{1}{a^4} = 119$$

বা,
$$(a^2)^2 + \left(\frac{1}{a^2}\right)^2 = 119$$

বা, $\left(a^2 + \frac{1}{a^2}\right)^2 - 2$. $a^2 \cdot \frac{1}{a^2} = 119$
বা, $\left(a^2 + \frac{1}{a^2}\right)^2 - 2 = 119$
বা, $\left(a^2 + \frac{1}{a^2}\right)^2 = 119 + 2$
বা, $\left(a^2 + \frac{1}{a^2}\right)^2 = 121$
বা, $a^2 + \frac{1}{a^2} = \sqrt{121}$
∴ $a^2 + \frac{1}{a^2} = 11$

১৩। (গ)

ব্যাখ্যা: ১ম রাশি =
$$2x (x^3 - 1)$$

= $2x (x^3 - 1^3)$
= $2x (x - 1) (x^2 + x.1 + 1^2)$
= $2x (x - 1) (x^2 + x + 1)$
২য় রাশি = $4x^2 (x^2 - 1)$
= $2 \times 2 \times x \times x \times (x + 1) (x - 1)$

∴ নির্ণেয় গ.সা.গু. = 2x (x – 1)

28 (本)

ব্যাখ্যা: (i) যোগফল
$$=$$
 $\left(\frac{a}{b}-1\right)+\left(1-\frac{a}{b}\right)$
 $=\frac{a}{b}-1+1-\frac{a}{b}$
 $=0$

(ii) জাগফগ =
$$\left(\frac{a}{b} - 1\right) + \left(1 - \frac{a}{b}\right)$$

$$= \frac{a - b}{b} + \frac{b - a}{b}$$

$$= \frac{(a - b)}{b} \times \frac{b}{-(a - b)}$$

$$= -1$$

ব্যাখ্যা : (i) উক্তিটি সঠিক নয় । কারণ চতুর্ভুক্তের তিনটি বাহু ও এদের অন্তর্ভুক্ত

ব্যাখ্যা : বৃত্তের ব্যাসার্ধ, r = 3 সে.মি. ু বৃত্তটির পরিধি = 2π একক

= 2 × 3.1416 × 3 সে.মি. = 18.84 সে.মি.

२४। (४)

ব্যাখ্যা : বৃত্তের ব্যাসার্ধ, r = 3 সে.মি.

∴ বৃত্তটির ক্ষেত্রফল = πτ² বর্গ একক $= 3.1416 \times 3^2$ বর্গ সে,মি, = 28.26 বর্গ সে.মি.

२५। (क)

ব্যাখ্যা: সর্বোচ্চ সংখ্যা 96, সর্বনিম সংখ্যা 51

∴ পরিসর = (সর্বোচ্চ সংখ্যা - সর্বনিম্ন সংখ্যা) + 1