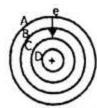
Chapter Two: Qualitative Chemistry

Creative Essay Type

2

3

Read the given stem :


Element	Atomic no.	
X	1	
Y	24	

[Notre Dame College, Dhaka]

- a. Give the common electronic configuration of transition elements?
- b. Heat of neutralization is always exothermic- why?
- For the electron of 'X' show that, the wave length of emission spectrum of highest energy is inversely proportional to its Rydberg constant.
- d. Analyze the precautions of storing the given solution in a laboratory?

Ans: See HSC EV Chemistry 1st Paper 2nd Chapter Note Ques. No. 32 of Answer Paper.

2. >

[BAF Shaheen College, Dhaka]

- a. What chelating agent?
- How can catalyst effect the rate of reaction of activation energy- Explain.
- Show the total orbital of A shell on basis of I and m.
- d. Evaluate mathematically if the electron transfer to shell and discuss in which region of electro magnetic radiation transmitted in the above stem.

Ans: See HSC EV Chemistry 1st Paper 2nd Chapter Note Ques. No. 33 of Answer Paper.

Answer the questions based on the electronic configuration—

The Ksp values of Fe (OH)₂ and Ca(OH)₂ are 5×10^{-17} and 4.8×10^{-6} respectively. [Adamjee Cantonment College, Dhaka]

- a. What is activation energy?
- Molar equilibrium constant can never be zero or infinitiveexplain.
- Determine the ionic product (Kip) of CaSO₄ in stem solution.
- d. For what maximum concentration of OH⁻ ion, Fe(OH)₂ will be precipitated out but Ca(OH)₂ will not in the stem solutions-explain mahtematically.

Ans: See HSC EV Chemistry 1st Paper 2nd Chapter Note Ques. No. 37 of Answer Paper.

4. >

50 ml	
6×10 ⁻⁴ M	
ZnSO ₄	
solution	
9%(1)	

40 ml 0.05M NaOH solution B

 K_{so} of Zn (OH)₂ is 1×10^{-17} .

- a. What is the IUPAC name of compound [CoCl₂(NH₃)₄]⁺? 1
- b. Which one is more acidic between H₂SO₄ and HNO₃ and why?
- How the identifications of ions are done? Explain.
- d. Will be the precipitation formed or not if solution A and B are mixed together? Justify.

Ans: See HSC EV Chemistry 1st Paper 2nd Chapter Note Ques. No. 48 of Answer Paper.

5. Dbserve the following information.

Solution-A:	80 mL 0.1 M Cr ₂ (SO ₄) ₃	
Solution-B:	120 mL 0.1 M NaOH	

Solubility product of Cr(OH)₃ at 25°C is 4.5×10^{-15}

[Birshrestha Noor Mohammad Public College, Dhaka]

- a. What is flame test?
- b. Why concentrated HCl is used during crystallization of edible salt?
- c. Determine solubility product of compound of solution-A. 3
- d. What will happen if two solutions are mixed? Analyze mathematically.

Ans: See HSC EV Chemistry 1st Paper 2nd Chapter Note

Ques. No. 35 of Answer Paper.

▶ Question No. a (Knowledge based)

Ques-1. What is sigma bond? [D.B., Dj.B., S.B.J.B.-18]

Ans: The bond created due to face to face overlapping of the two valence orbitals during the creation of covalent bond is known as sigma bond.

Ques-2. What is orbital? [D.B.-17]

Ans: The region around the nucleus where the probability of finding revolving and fixed energy electron cloud is 90–95%, that region of electron cloud is called orbital.

Ques-3. What is α-particle? [R.B.-16]

Ans: The heleum nucleus formed of two protons and two neutrons is called α -particle (${}_{2}^{4}\text{He}^{2+}$).

Ques-4. What is vacuum distillation? [Dj.B.-17]

Ans: The process of separating a liquid from a mixture by distillating at a lower temperature by reducing the boiling point of the liquid by reducing the atmospheric pressure on it is called vaccum distillation.

Ques-5. What is orbit? [Ctg.B.-17]

Ans: According to Bohr's atomic model, the fixed circular path around the nucleus for the rotation of electrons is called orbit.

Ques-6. What is R_f? [S.B.-17]

Ans: The ratio of the distance travelled by the constituent and the solvent in paper chromatography is denoted by R_f.

Ques-7. What is spectrum? [R.B., C.B., Ctg.B., B.B. 18]

Ans: When light rays of sunlight are separated from one another according to this wavelengths then it is known as spectrum.

Question No. b (Comprehension based)

Ques-1. In which orbital between 3d and 4p electron will enter first? [D.B.-16]

Ans: In which orbital the electron will enter first is determined by Aufbau's principle or (n + l). According to the principle, the orbital of which (n + l) value is low has low energy and electron will enter to it first. But if the (n + l) value of two orbitals are same, then electron will enter the orbital whose n value is lower. For both 3d and 4p orbital the (n + l) value is 5. But for 3d orbital the n value is 3 and for 4p orbital the n value is 4.

So, electron will enter 3d orbital first.

Ques-2. Write down the principle of chromatography.

[Di.B.-16]

Ans: Chromatography is mainly a separation technique which is mainly applied for the separation of molecular mixture. In this technique, on a large surface like (i) taking an adsorbant in a glass column or burette, (ii) on liquid on a solid base the mixture is absorbed. Then if liquid or gas is run through it then the constituents of the mixture are separated based on their different adsorption rate. How much a substance will be adsorbed on the adsorbant is dependent on the nature of that substance. If the substance is polar then generally adsorption is more. The separation by chromatography is suspended on the rate of adsorption and the rate of mobile phase.

Ques-3. At 25°C the solubility of KNO₃ is 31.6, what do you mean by it? [C.B-17]

Ans: At a fixed temperature the amount of solute expressed in gram is dissolved in 100gm of solvent to produce saturated solution, that amount of solute is called the solibility of that solute. The solibility of KNO₃ at 25°C is 31.6 means, 31.6gm KNO₃ at 25°C dissolves into 100gm of solvent and produce saturated solution.

Ques-4. Bohr's theory is applicable for He - Explain.

[Ctg.B.-17]

Ans: We know that, Bohr's atomic model is more accurate than Rutherford's atomic model. This is because, one of the principle of Bohr's atomic model is, when electron enters from one energy level to another, then the electron absorbs or radiates a fixed amount of energy. As a result a line is formed in the atomic spectrum. Again Bohr's atomic model can explain the spectrum of H atomic basing only one electron or ions having one electron (He⁺, Li²⁺). But it can't explain the spectrum having many electron.

So, as there is only one electron in He⁺, here Bohr's theory is applicable.

Ques-5. Why ether is not completely dehydrated during distillation? [J.B.-17]

Ans: During the distillation of ether it is not completely dehydrated because pure ether can form per-oxide in presence of atmospheric oxygen. As a result there is a chance of explosion at the end of distillation. The reaction of ether with atmospheric oxygen is;

$$C_2H_5 - O - C_2H_5 + \frac{1}{2}O_2 \longrightarrow C_2H_5 - O - O - C_2H_5$$

Di-ethyl ether

Di-ethyl peroxide

Creative Multiple Choice

 Which is the quantum set of the two electrons of the outer most shell of calcium? (D.B.-17)

(a)
$$n = 4$$
, $l = 0$, $m = 0$, $s = +\frac{1}{2}, \frac{1}{2}$

ⓑ
$$n = 3$$
, $l = 1$, $m = 0$, $s = +\frac{1}{2}$, $+\frac{1}{2}$

©
$$n = 4$$
, $l = 1$, $m = 0$, $s = -\frac{1}{2}$, $-\frac{1}{2}$

②
$$n = 4$$
, $l = 2$, $m = 1$, $s = +\frac{1}{2}$, $-\frac{1}{2}$

2. Which is the correct electron configuration?

1s 2s
$$\leftarrow$$
 2p \rightarrow

$$1s \quad 2s \quad \leftarrow \ 2p \rightarrow$$

3. What is MRI?

- Magnetic Resonance Imging
- Movable Resonance Imaging
- © Nuclear Magnetic Resonance
- Muclear Radiation

4. Color of Na in flame test-

Red

- Brick red
- © Golden yellow
- @ Violet

5. "Rutherford's theory is similar to solar system" where is the failure?

- Rotation of electrons and planets
- Positions of electrons and planets
- © Positions of electrons and planets
- Attraction between charged particle and nucleus and attractive force between planet and sun

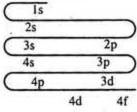
6.	What is used to identi	fy fake passport? [D.B17]			UV-radiation in real no	tac?	
0.	® γ-ray					2002	
	© IR-radiation	UV-radiation	0			dier graphix	
7.	Which set is the value	그 그 그 내가 귀하다 한 경에 가장하는 이번 가게하고 있다.	•		Water print Excited atom		
	[D.B16]	of in for 5d of Star.			© Excited atom ① Liquid compound		
	(a) 0	⑤ −1, 0, +1			A SECTION OF THE PROPERTY OF T		
	© -2, -1, 0, +1, +2	@ -3, -2, -1, 0, +1, +2, +3	0	21.	How many phases as [Ctg.B17]	re there in chromatogra	phy?
8.	Which one is correct	for solubility principle?			(a) 1	⊕ 2	
	(a) $K_{sp} = \sqrt{S}$	ⓑ $S = \sqrt{K_{sp}}$			© 3	@ 4	
	© $S = Ks^2p$		0	22		mann series are create	d in
9.		sidiary quantum number?		~~.	hydrogen Bectra?	main series are creare	
•	Number of energy	[1] 이상 5명 [1] (1) [1] (1) [2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (Ultraviolet	S Visible	
	Number of sublever				© Infrared	Microwave	6
	© Principal quantum			23	What is NMR?	XX X CONTRACTOR CONTRACTOR	
	Position of electron		0		Radio waves	⑤ Infrared radiation	
10	문장 (10명 전기 10명 (10명 HELE FILE FILE FILE FILE FILE FILE FILE F	nber, if the red radiation h			© Magnetic resonance		
10.	wavelength of 7000 A		as a		Nuclear magnetic re		0
	(a) 1.428×10^{-3} nm	T 1 1 1 1 1 1 1 1 1		24	- 57.1	t colour in flame test? /B.B	-171
	© $1.428 \times 10^{-3} \text{m}^{-1}$	@ 14.28 × 10 ⁻³ Å	0	~	Na ⁺	(b) K⁺	978.640
11	Which one is correct		_		© Ca ²⁺	⊕ Cu ²⁺	
11.	(a) s ² d ⁴	ⓑ s² d9		25	Used to detect NH4+ io	n in solution —	- 3
	© s ¹ d ¹⁰	@ s ² f ¹³	0	20.	Oxalic acid	Nessler's solution	
12		are there in 3d subshell of Fe	- T		© Vitamin	Fenton's reagent	0
12.	a 5	6 6		26	Which one is not prese		
	© 8		0	20.	(a) H ₂ S gas	HCl	
		1970 PM	w		© NaOH	⊕ HNO₃	
13.	Which indicates isoto			27		tained when 100g satu	rated
	a. $^{31}_{15}$ P, $^{32}_{16}$ S	⊕ 64 Cu, 64 Zn		27.		pourised at 50°C. What	
	© 6 C,6 C	@ 1 H, 2 H				hat temperature? [R.B17]	
	© 6 C, 6 C	(d) 1 H, 1 H	0		(a) 200	(b) 150	
14.	Which element is use	d for the treatment of cancer	·?		© 100	@ 50	0
	® Ra	⑤ Fr		28	Which value of R.	is not acceptable in p	naner
	© Th	@ Rn	0	20.	chromatography? [C.B.		puper
15.	Which salt is soluble	in water?			0.5	ⓑ 0.7	
	AgF	(b) AgBr			© 0.9	@ 1.1	0
	© AgCl	@ AgI	•	29.	In which series of	hydrogen atomic spe	ectra,
16.	From which orbital	electrons are transferred	for			ge can be observed? [Dj.B.	
	more stability?				Paschen	Hymann	
	a s	ⓑ p			© Balmer	Bracket	0
	© d	@ f	•	30.	What is the solubility	if 30 g of solute is dissolv	ed in
17.	Which sequence is	correct according to auf	bau		100g saturated solution		
	principle? [R. B17]	750			30	ⓑ 40	
	4s < 3d < 4p	⑤ 3d < 3s < 4p			© 75	100	6
	© 4d < 5s < 5p	③ 5s < 5p < 4d	0	31.	What is the colour of t	he precipitate of Al3+ ion	test?
18.	What is the value of I	t for hydrogen?			(a) White	Deep blue	
	230 cm ⁻¹	⑤ 560 cm⁻¹		-	© Bluish green	Black	6
	© 109678 cm ⁻¹		0	32.		by sublimation process?	
19.	Which substance is	used as coated screen	in		NaCl	Benzoic acid	
	Rutherford's α-particl	e scattering? [D.B16]			© KCl	Sugar	6
	Au			33	- 72 (1975)	a solution is heated in	
	© PbS	@ Ra	0	33,	beginning of crystallisa		. sne
20.	The presence of which	material creates fluorescenc	e of		Activated carbon	Na	
	8				© HCl	@ HNO ₁	

- 34. Which one is mostly used in solvent extraction?
 - @ HCl
- (HNO
- © CaCl₂
- @ Ethoxyethane
- The equation for determining the angular momentum of an electron in an atom's 2nd energy shell — (B.B.-17)
 - (a) $mvr = \frac{2h}{\pi}$

- 36. What is the solubility product if the solubility of CaF₂ is 0.0002 mol/L? [All Board-18]
 - ② 2.3×10⁻¹¹
- ⑤ 3.2×10⁻¹¹
- © 2.3×10⁻¹⁰
- @ 3.2×10⁻¹⁰
- 37. Mass of α- particle is than mass of electron.
 - More
- Much higher
- © Less
- @ Equal
- The solubility of Bi₂S₃ is S. What is the solubility product? [All Board-18]
 - @ 108S5
- ⓑ 27S3
- © 16S2
- @ 4S3
- If the energy of the first orbit of hydrogen atom is E₁, what will be the energy of the 3rd orbit? [Dj.B.-16]
 - (a) $E_1 \times \frac{1}{9}$
- ⓑ E₁×9
- © $E_1 \times \frac{1}{3}$
- d $E_1 \times 3$
- 40. Which of the following rules is applied to calculate the number of electrons in a subshell? [C.B.-17]
 - ② 2(2l+1)
- ⓑ (2*l* + 1)
- © (n+1)
- @ 2n2

► Multiple Completion Based Questions

- 41. In an evaporation process
 - i. Water is mixed with the collected liquid of organic compound
 - ii. Separation of organic liquid and water by using funnel
 - iii. Amount of incoming and outgoing vapour is unequal


Which one is correct?

- (a) i & ii
- (b) i & iii
- © ii & iii
- @ i, ii & iii
- 42. For n = 3
 - i. 3f orbital is not possible
 - ii. if l = 2, m = -2, -1, 0, +1, +2
 - iii. 1 = 0, 1, 2

Which one is correct?

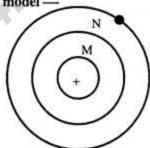
- @ i&ii
- 6 i & iii
- © ii & iii
- @ i, ii & iii

43. In the configuration —

- i. Positions of electrons (Aufbau principle) are shown
- Electrons will enter into 4th orbital before 5th orbital
- iii. 1s < 2s < 2p < 3s < 3p < 3d < 4s sequence is included</p>

Which one is correct?

- @ i&ii
- ⓑ i & iii
- © ii & iii
- @ i, ii & iii
- 44. In paper chromatography
 - Filter paper should be cut at a definite shape
 - ii. Rf is to be determined
 - iii. Solvent front has to be marked with a pencil


Which one is correct?

- @ i&ii
- 6 i & iii
- © ii & iii
- @ i, ii & iii

0

0

45. In the model

- i. Amount of energy at Nth enrgy level is fixed
- Energy will be emitted when electron jumps back to lower energy level
- iii. The amount of emitted or absorbed energy, $\Delta E = hv$

Which one is correct?

- a i & ii
- ⓑ i & iii
- © ii & iii
- @ i, ii & iii
- 46. Applicable for the value of R_f---{Dj.B.-17}
 - Ratio of distance travelled by solute and solvent
 - ii. Ratio of distance travelled by solvent and solute
 - iii. Value is less than one (1)

Which one is correct?

- @ i&ii
- Б i & iii
- © ii & iii
- @ i, ii & iii
- 47. Expression of Planck's equation is
 - i. $mvr = \frac{nh}{2\pi}$
- ii. E = hv
- iii. $\Delta E = \frac{hc}{\lambda}$

Which one is correct?

- @ i & ii
- ⓑ i & iii
- @ ii & iii
- @ i, ii & iii

48. Bohr's atom model i. Theory related to energy emission @ i&ii .

ii. Theory related to energy level

iii. Theory related to electron & proton

Which one is correct?

(b) i & iii

@ ii & iii

@ i, ii & iii

49. For orbital - [C.B.-16]

i 1=1

ii. m = +1, 0, -1

iii. orbital number = 2

Which one is correct?

@ i&ii

(b) i & iii

© ii & iii

@ i, ii & iii

Magnetic quantum number —

i. Expresses electron spin

ii. Value of m depends on I-value

iii. $m = 0 \text{ to } \pm 1$

Which one is correct?

@ i&ii

(b) i & iii

@ ii & iii

@ i, ii & iii

51. For orbitals — [All Board-18]

i. l=1

ii. m = +1.0 - 1

iii. orbital numbers-2

Which one is correct?

@ i & ii

(b) ii & iii

© i&iii

@ i, ii & iii

52. The ion [Co(NH₃)₆]³⁺ is -

Octahedral

ii. d2sp3 hybridised

iii. Paramagnetic

Which one is correct?

(a) i & ii

(b) i & iii

@ ii & iii

@ i. ii & iii

53. For the element having atomic number of 19

The last electron is in 3d subshell

ii. 4s energy level is incomplete

iii. Energy sequence is: 1s < 2s < 3p < 3s < 3p < 4s < 3d

Which one is correct?

(a) i & ii

(b) i & iii

© ii & iii

@ i, ii & iii

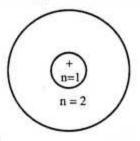
Use of chromatography — [S.B.-15]

Separation and purification of organic compounds

ii. Identification of pollutants created due to pollution

iii. Extraction of red dye from pepper powder

Which one is correct?


(a) i & ii

(b) i & iii

© ii & iii

@ i, ii & iii

At second energy level of the model —

i. 1 = 0.1

ii. Electron numbers = 8 (2nd enrgy level)

iii. Electron configuration - 1s22s2p4

Which one is correct?

(a) i & ii

(b) i & iii

© ii & iii

(d) i, ii & iii

56. For the identification of Ca2+ ion -

i.
$$(CH_3COO)_2Ca + NH_4OOC - COONH_4 \longrightarrow 2CH-O-C=O$$

$$_{3}COONH_{4} + Ca$$
 $|$ $O - C = O$

ii. Addition of ammonium oxalate forms white precipitate

iii. Precipitate calcium oxalate is not soluble in HCl

Which one is correct?

(a) i & ii

(b) i & iii

© ii & iii

@ i, ii & iii

Read the following statement and answer question numbers 57 and 58:

The serial number of principal energy levels of electrons in an atom is called principal quantum number. It is denoted by 'n'. Here, n = 1, 2, 3, 4 etc are positive integers.

57. If the value of principal quantum number is more than 4, what will be maxiumm number of electrons?

(b) 64

© not more than 32

@ 18

58. For 4th energy shell -

i. Is called N shell

Maximum electron containing capacity is 32

iii. The higher the value of n, the smaller the size of atom

Which one is correct?

@ i&ii

(b) i & iii

© ii & iii

@ i. ii & iii

Observe the following equations and answer the questions 59 and 60:

 $aF_2 \rightleftharpoons Ca^{2*} + 2F$ and $PbCrO_4 \rightleftharpoons Pb^{2*} + CrO_4^{2-}$

59. For the given compounds -

i. $K_{sp(CaF_2)} = [Ca^{2+}] \times [F^-]^2$

ii. $K_{sp (PbCrO_4)} = [Pb^{2+}] \times [CrO_4^-]^4$

iii. Among all electrons, two will have spin direction

Which one is correct?

(a) i & ii

(b) i & iii

@ ii & iii

@ i. ii & iii

0

60.	What will happen if the product of [Ca2+] and [F	1
	exceeds the solubility product?	

- Soluble
- Partly soluble
- © Precipitation
- Partly insoluble

Read the following stem and answer question numbers 61 and 62:

Utpal considered an element of period 3 and group IV A and observed that the both electrons of s orbital of 3rd energy shell differed only in one of the following:

size, shape, orientation and spin direction.

61. Which principle is followed by Uptal's observation?

- Aufbau principle
- (b) Hund's rule
- @ Bohr's principle
- Pauli's exclusion principle

62. In the last orbit of the element of the stem -

- i. Number of orbitals = 9
- ii. Number of electrons will be 18
- iii. Among all electrons, two will have spin direction

Which one is correct?

- @ i&ii
- (b) i & iii
- © ii & iii
- @ i, ii & iii

Read the following stem and answer the following two questions: [S.B.-17]

$$Ca(OH)_2 + aq \longrightarrow A + 20H^-$$

63. Applicable information for A of the stem -

- i. Brick red colour is observed in flame test
- ii. White colour is obtained with (NH₄)₂C₂O₄
- iii. Known as lime

Which one is correct?

- @ i & ii
- (b) i & iii
- © ii & iii
- @ i, ii & iii

- 64. If the concentration of OH⁻ is 0.02M, what will be the pH?
 - @ 12,60
- 12, 30
- © 1.70

0

0

@ 1.40

Read the following stem and answer question numbers 65 & 66:

Period 2	Grou	Group 1A		
	Li	Be	В	
	X	Z	AI	
	X	Z	Y	
	Rb	Sr	In	
	Cs	Ba	TI	

65. What is the colour of Z in flame test?

- Wiolet
- (b) Pink
- © Colourless
- @ Bluish green

66. Reasons for showing different colors by X, Y and Z are —

- i. Their salts form metal chlorides with concentrated HCl
- Formed metal chlorides absorb different wavelengths
- iii. Complementary colours create the burner flame

Which one is correct?

- @ i & ii
- ⓑ i & iii
- © ii & iii
- @ i, ii & iii

Answer question numbers 67 and 68:

The wavelength of an emitted radiation from a source is 412 nm.

- 67. What is the emitted radiation?
 - γ-ray
- **ⓑ** X-гау
- © Violet radiation
- Infrated radiation
- 68. What is the frequency of the used radiation if velocity of light is 3×10^8 m/s?
 - 7.28 × 10¹⁴ Hz
- ⓑ 7.217 × 10¹⁰ Hz
- © 7.28 × 10²⁰ Hz
- @ 7.317 × 107 Hz