Chapter Four : Chemical Changes

2

3

4

3

1

2

3

1

2

Creative Essay Type

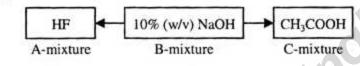
1. ▶ Observe the reaction :

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ and here 60% of PCl_5 is dissociated at 1atm at 25°C. [Mirzapur Cadet college, Tangail]

- a. What is chemical equilibrium?
- b. What is meant by buffer solution?
- c. Determine the value of K_c of above reaction?
- Derive the K_p expression for the above reaction.

Ans: See HSC EV Chemistry 1st Paper 4th Chapter Note Ques. No. 55 of Answer Paper.

2. Read the given stem :

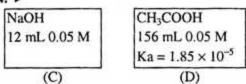

60mL 0.1M	20mL 0.1M	80mL 0.25M
HA solution	вон	HB solution
$\alpha = 19.8\%$	solution	$\alpha = 16.7\%$
	$\alpha = 100\%$	1
(A)	(B)	(C)

[Notre Dame College, Dhaka]

- a. What is hybrid orbital?
- b. Is the set of quantum no. n = 3, l = 2, $m = \pm 2$ possible for an element 'Z(19)'- explain?
- Find the pH value of solution 'A'.
- d. In A & B mixture & B & C mixture, which one is more preferable as buffer solution- analyze mathematically. 4

Ans: See HSC EV Chemistry 1st Paper 4th Chapter Note Ques. No. 34 of Answer Paper.

3. ▶



[Birshrestha Noor Mohammad Public College, Dhaka]

- a. Write Hess law.
- b. Sc is not transition-explain.
- c. Calculate pH of alkaline solution.
- d. Which one in between AB & BC mixture has high neutralization energy? Analyze it.

Ans: See HSC EV Chemistry 1st Paper 4th Chapter Note Ques. No. 38 of Answer Paper.

4. ▶

[Cumilla Cadet College, Cumilla]

- a. What is heat of solution?
- b. Why is 2d orbital not possible?
- c. Calculate pH of mixed solution (C + D) of given stem.
- d. How pH of the mixed solution (C + D) of given stem remain unchanged after addition of small amount of acid and base? Analyze with mechanism.

Ans: See HSC EV Chemistry 1st Paper 4th Chapter Note Ques. No. 70 of Answer Paper.

Question No. a (Knowledge based)

Ques-1. Define pH. [D.B. 17]

Ans: The negative logarithm of the molar concentration of H⁺ ion in a solution is known as pH of the solution.

Ques-2. Write down Hess's law. [D.B. 17]

Ans: If a reaction can take place by single step or several steps, the overall change in enthalphy is the same whichever route is followed with same initial reactants and final products.

Ques-3. What is a buffer action? [R.B. 17]

Ans: The mechanism of prevention of change of pH even after addition of acid or base is called buffer action.

Ques-4. What is green chemistry? [C. B. 17]

Ans: Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances.

Ques-5. What is rate of reaction? [S. B 16]

Ans: The rate of reaction is the change in concentration over the change in time.

Ques-6. What is ionic product? [J.B 17]

Ans: At ionized stated, the product of concentration of ions of a compound is called ionic product.

▶ Question No. b (Comprehension based)

Ques-1. Why is the neutralization enthalpy of a strong acid and a strong base is a constant value? [D.B. 17]

Ans: Heat of neutralization of strong acid and strong base is constant and if is -57.34 kJ approx. In aqueous solution strong acid like HCl acid and strong base like NaOH are completely ionized as follows,

$$HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)} \cdot NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$$

When a strong acid reacts with a strong base, the cation of the base and the anion of the acid remain unchanged, they are called separated ions. In reality the H* of the acid and the OH of the base combine to produce.

$$H^+ + OH^- \longrightarrow H_2O$$

The heat of neutralization of a strong acid and a strong base is infact the heat of this ionic reaction. For this, the heat of neutralisation of a strong acid and a strong base is constant.

Ques-2. What is understood by the ionic product of water? [R.B. 17]

Ans: At a temperature, the product of the concentration of hydrogen ion (H⁺) and hydroxyl ion (OH⁻) in pure water is constant. A

$$[H^{\dagger}] \times [OH^{-}] = K \times [H_2O] = K_w = constant.$$

Here, K_w is called the ionic product of water. Its value changes slightly with change of temperature. At 25°C its value is taken as 1×10^{-14} .

Ques-3. Why are enzymes called biocatalysts? [S.B.17]

Ans: Enzyme is a lifeless, amorphous, nitrogenous complex orgain substance secreted from yeast. Enzyme is a large portentous molecule. At different points of this large molecule there are some actinated sites. Reagent molecules attach to there points and form intermediate unstable compounds which later dissociates and form product and the enzyme is reaction. In this way enzyme fastens the reaction by lowering the activation energy by supplying activated points and thus used as catalyst in organic reactions.

Creative Multiple Choice

1.	What is the pH of 0.0	05M H ₂ SO ₄ solution? [D.B	17]		Fe	Ni	928
	3 2.3	ⓑ 2.0			© Al ₂ O ₃		0
	© 1.3	1.0	0	14.		or the reaction CaCO ₃ (s)	←
2.	For the reversible rea	ctions given —			$CaO(s) + CO_2(g)$ is -		
	$M \rightleftharpoons N$, $K_C = 1$; $N \rightleftharpoons P$, $K_C = 3$;				(a) $K_c = \frac{[CaO]}{[CaO]}$		
	$P \rightleftharpoons Q, K_C = 5$ and						_
	$M \rightleftharpoons Q$ the value of K_c will be –				© K _c = [CO ₂]		. 0
	(a) 3	® 5		15.	temperature? [All Boa	product of pure water a	t room
	© 10	@ 15	0		(a) 1 × 10 ⁻¹⁴	⊕ 1 × 10 ¹⁴	
3.		na acte as autocatalvet for	•		© 1 × 10 ⁻⁷	(d) 1×10^7	9
Э,	Which of the following acts as autocatalyst for the redox reaction of acidic KMnO ₄ and oxalic acid?			16	What is the pH of 12		_
	[R.B17]	and remot and orane o	icia.	10.	(a) 12.51	® 13.51	
	® MnO₁	Mn²⁻			© 14.51	@ 15.51	0
			00	17.		xide, which of the followi	
	© CrO ₄ ²⁻	③ K⁻	0	73		eat of neutralisation? [All B	
4.		$B \rightleftharpoons C + D$ read	ction	10	HNO ₃		
	proceeds to almost co				© HCl	⊕ H₂SO₄	0
	(a) $k = 10^3$	(b) $k = 10^{-2}$	_	18.		ature, pressure, concentra	
_	© k = 10					equilibrium, the equilibrium	
5.	Degree of dissociation of weak acid —					to reduce the effect of the	
	(a) $\sqrt{\frac{K_b}{C}}$	® √ C			Avogadro's law	g principle support the syst	em:
	V C	- V Ka			Le-Chatelier's prin	iciple	
	$\odot \sqrt{\frac{K_a}{C}}$	√K _x C	0		© Law of conservation	100 m	
6.	What is the nH of 10%	HCl solution? [All Board-18]			@ Faraday's law of e		0
0.	(a) 0.56	⊕ 1.0		19.	What will be the r	oH of the solution made	e from
	© 2.6	@ 5.6	0			.09 M NaOH solution to	
7.		owing is the expression	for			lution? ($K_a = 1.8 \times 10^{-4}$) /L	Oj.B17]
	Ostwald's law of dilution?			P	③ 10.2305	5.9673	-
	$ (a) K_a = \frac{\alpha C}{1 - \alpha^2} $	$K_a = \frac{\alpha^2}{1 - \alpha^2}$	AU1		© 5.6957	3.7695	0
		(b) $K_a = 1 - \alpha^2$	112	20.	$N_2(g) + 3H_2(g) \rightleftharpoons$		
						nts are found at equilibrit	
						400°C, 0.00420 mole N ₂ 7 mole NH ₃ . Calculate the	
8.		heat of neutralisation for	the		of K _c .	more iviig. Calculate the	e value
	reaction— CH ₃ CO		 >		1.76 dm ³ mol ⁻²	1.23 dm ³ mol ⁻¹	
	$CH_3COONH_{4(aq)} + H_2$ (a) -50.4 kJmol^{-1}	⊕ -55.2 kJmol ⁻¹	[R.B17]		© 1.76 dm3 mol-2		0
	© -57.2 kJmol ⁻¹	 ⊕ −35.2 kJmol ⊕ −68.6 kJmol 	•	21.	From the followin	g halides, which one	is the
	270				strongest acid?		
9.		f C-H, C-Cl, Cl-Cl and F kJmol ⁻¹ , 243 kJmol ⁻¹ and			HCI	⊕ HBr	
		. Calculate the ΔH for			© HF	@ HI	0
	- 1.7.1 - 1.7.1 (1.7.1	= CH ₃ Cl + HCl [R.B17]	57750	22.	Which reaction show	$vs K_p = K_c$?	
	105 kJmol ⁻¹				(a) $PCl_5(g) \Rightarrow PCl_3(g)$	$+ Cl_2(g)$	
	© 95 kJmol ⁻¹	@ 90 kJmol ⁻¹	0		ⓑ $N_2(g) + 3H_2(g) ≠$		
10.	Which of the following is irreversible in an open vessel?				© $2HI(g) \rightleftharpoons H_2(g) +$	4 J J S 7 7 7 4 L	_
	(a) $CH_3COOC_2H_5 + H_2O \longrightarrow C_2H_5OH + CH_3COOH$ (b) $CaCO_3 \longrightarrow CaO + CO_2$					9	
			23.	, 그리, 얼마, 어느, 그리, '얼마 살이 살다면 살다면 생물이 되었다면 하는 것이다. 그는	of CO ₂ are produced	from	
					of 1 mole of C ₂ H ₅ OH? © 2 mol		
		$CuSO_4.3H_2O + 2H_2O$	0		1 mol3 mol	@ 4 mol	0
11.		g is a hypoacid? [D.B16]		24	Which is the irrevers		U
	® H ₃ PO ₃	⊕ H ₃ PO ₂	0940	24.	(a) $2NO_2 \rightarrow N_2O_4$	ⓑ $H_2 + I_2 \rightarrow 2HI$	
	© H ₃ PO ₄	⊕ HPO ₃	. 0		© 2KClO ₃ →2KCl +	맛있다. 사이트	
12.	Which of the following acid has the highest strength?				ⓐ $CuSO_4.5H_2O \rightarrow C$		0
	[All Board-18] (a) H ₂ SO ₄	HClO₄		25		ecimolar ethanoic acid (K	22 TANDAG
	© H ₃ PO ₄	HNO ₃	0	25.	$\times 10^{-5}$)? [Dj.B17]	common common actor (A	
13.		d for the production of H			② 2.872	® 11.128	
7:37(2)	in contact process? /E		*:01557 T.I.		© 11.281	@ 11.821	0

26.	Which is the decreasing (a) F̄ > Cl̄ > Ī > Br̄ (c) F̄ > Cl̄ > Br̄ > Ī		0		i. catalyst Pt iii. reaction rate increas Which is correct?	ii. catalyst poison Al ₂ C ses in presence of V ₂ O ₅)3
27.	Which is the green solve Solid Carbondioxide CO ₂ below 31.1° C	ent? [S.B17]	9	••	i and iiii and iii	(b) i and iii (d) i, ii and iii	
28.	At what pH does I freshness?			38.	Characteristics of cata i. increases the reaction ii. decreases the reaction iii. destroys bacteria	on rate	
29.	© 7.4 Which is the unit of rate		a B17]		Which is correct? a i and ii	ⓑ i and iii	
	 mol LS⁻¹ L mol⁻¹S⁻¹ 	 ∫ mol L⁻¹S⁻¹ ∫ mol L⁻¹S 	0	20	© ii and iii	@ i, ii and iii	,
30.	 30. How does a buffer solution control pH when a small amount of NaOH solution is added to the buffer solution? a Produced OH is converted to weak acid b Produced OH is converted to H₂O c Produced H is converted to weak alkali 			39.	 i. Heat of reaction car ii. Heat of formation determined iii. Heat of solution car Which one is correct? a i and ii 	of organic compound con be determined (b) ii and iii	an be
31.	 Produced Na⁺ is conv The combustion enthalpi -1060.4 kJ, - 296.1 kJ and is the heat of formation of a + 62.07 kJ 627 kJ 	es of CS ₂ , S and carbo 1-406.13 kJ respectively.		40.	© i and iii Protophilic compound i. NH ₄ OH iii. CH ₃ -NH ₂ Which one is correct? (a) i and ii	ii. $NH_2 - NH_2$	×
	If K_1 is the equilibrium $N_{2(g)} + 3H_{2(g)} \Longrightarrow 2N$ constant K_2 of the re $NH_{3(g)}$ [R.B17] (a) $K_2 = \frac{1}{\sqrt{K_1}}$ (b) $K_2 = \sqrt{K_1}$ The amount of energy	$H_{3(g)}$, then find equilibrated action $\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)}$ $K_2 = K_1$ $K_2 = \frac{1}{2}K_1$	orium —	41.	i and iii Helium gas is adde SO _{2(g)} +Cl ₂ vessel. Things will har i. more amount of SC iii. concentration of SC iii. no change in the SO ₂ Cl ₂ Which is correct?	d i, ii and iii ed to the reaction, SO e(g) at equilibrium in a co ppen — OCl ₂ will be produced O ₂ will not decrease concentration of SO ₂ , C	closed
	of 1mol H–H bond is 43 of 1 mol of O–H bond is Again, amount of energy of O–H bond is 462.5 kJ reaction — $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$ (a) +933kJ (c) -241kJ	462.5 kJ. Ty released for the form What is the ΔH value	ation		(a) i and iii	(b) ii and iii (d) i, ii and iii ΔH ₁ ΔH ₂	
34.	Which of the following the reaction — 2H ₂ O ₂ — a Manganese dioxide vanadium pentoxide	acts as negative cataly		42.	Applicable to the figure i. $\Delta H_3 + \Delta H_4 = \Delta H_1 + \Delta H_5$ ii. $\Delta H_1 = \Delta H_3 + \Delta H_5$ iii. $\Delta H_4 = \Delta H_5 + \Delta H_2$	re — [Dj.B17] - ΔH ₂	
35.	Which enzyme preso production of ethanol fr	om glucose?	the		Which one is correct? a i and ii i and iii	ii and iiiⓓ i, ii and iii	
36.	invertase amylase What is the ionic production	(a) urease (b) zymase (c) of water at 25°C?	0	43.	Used in agricultural fi i. Lime iii. Magnesium fertilize	ield when pH is decreased ii. Calcium fertilizer	_
	 7 10⁻¹⁴ 	 ♦ 14 ♦ 6.023 × 10²³ 	0		Which is correct? a i and ii	er ⊚ ii and iii	

© i and iii

@ i, ii and iii

37. In the reaction $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g) \longrightarrow$

 Heat of neutralisation ii. H+ and OH are present in the reaction iii. Value of enthalpy is negative Which is correct? (a) i and ii (b) ii and iii @ i and iii @ i, ii and iii 52. Increase of activation energy results -- (R.B.-15) i. in the increase of collision numbers ii. in reducing rate of reaction iii. the equilibrium attaining is delayed Which one is correct? (a) i and ii (b) i and iii © ii and iii @ i, ii and iii 53. Higher value of dissociation constant in solution - Concentration of H⁺ increases ii. Concentration of H+ decreases iii. Acidity increases Which one is correct? i and ii (b) i and iii © ii and iii @ i, ii and iii 54. The buffer system which works to control blood pH i. Hydrogen ion ii. Hydroxyl ion iii. Bicarbonate ion Which one is correct? i and ii (b) i and iii © iii @ i, ii and iii Observe the stem and answer question number 55 and 56. At equilibrium, 15.6% of PCl₅ is dissociated at 25°C and 1.5 atm. The partial pressures of PCl₅ and Cl₂ gas are 1.095 and 0.202 atm respectively. [D.B.-17] 55. What is the value of K_P? (a) 2.74×10^{-2} atm (b) 2.84×10^{-2} atm (c) 3.74×10^{-2} atm (d) 5.74×10^{-2} atm 56. If PCl₅ is added to the reaction given in the stem i. The reaction proceeds forward ii. The reaction proceeds backward iii. Equilibrium will change Which one is correct? (b) i and iii (a) i @ i, ii and iii © iii Observe the following graph and answer to question numbers 57 and 58. E→ KJ mol 50

i and iii

51. For strong acid and strong alkali - [C.B.-16]

@ i, ii and iii

(a) i and ii

© ii and iii

(a) i and ii

(b) i and iii

© ii and iii

@ i, ii and iii

50. The reaction H₂ + I₂ === 2HI is -

Endothermic reaction

ii. Amount of HI reduces when temperature is reduced at equilibrium

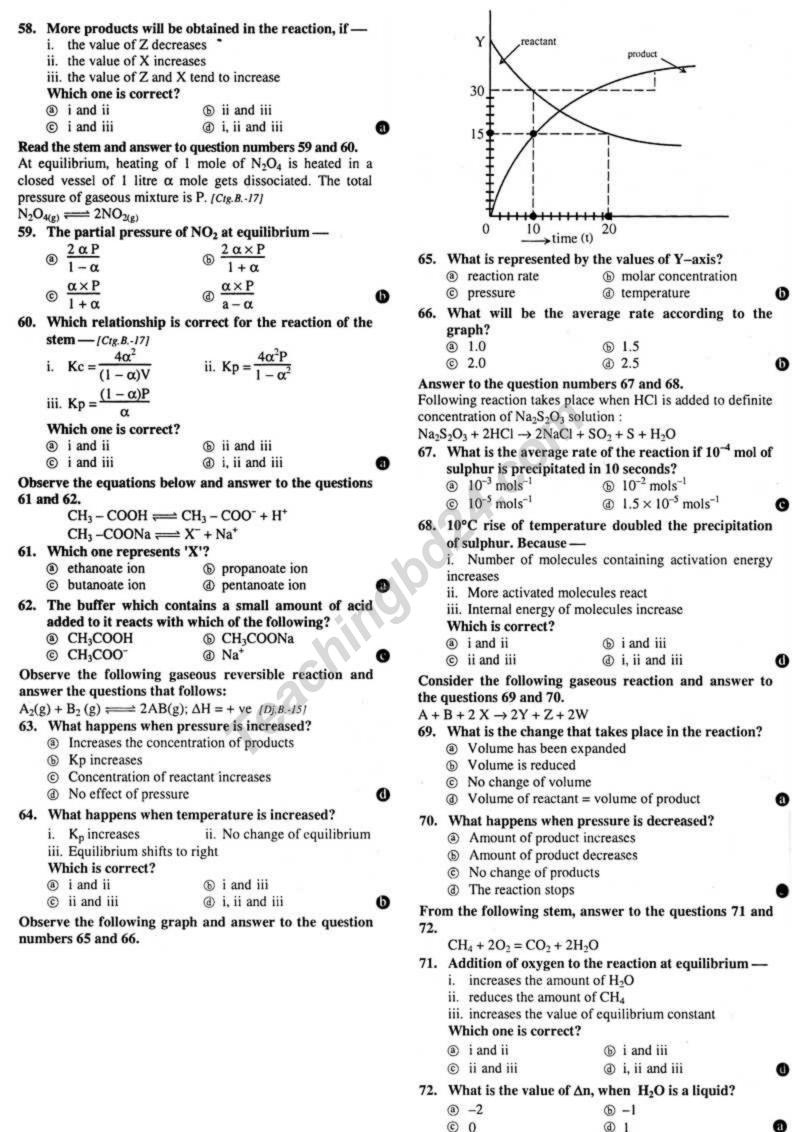
iii. No effect of pressure at equilibrium

Which is correct?

20

10

+ 60 kJ mol⁻¹


© + 20 kJ mol⁻¹

Reaction axis-

⊕ + 40 kJ mol⁻¹

@ + 10 kJ mol-1

57. What is the value of ΔH of the reaction -

