Dinajpur Board-2017

Chemistry First Paper

Subject Code

1 7 6

Time — 2 hours 35 minutes

Creative Essay Type

Full marks - 50

[N.B. -The figures in the right margin indicate full marks. Read the stems carefully and answer the associated questions. Answer any five questions.]

1.

a. What is the Hund's rule?

b. Polarisation of cation by anion does not ocur. Why? 2

- c. Calculate the absorbed radiation by the electron transition shown in the stem.
- d. One electron of S orbital of Z energy shell and another electron of S orbital of Y energy shell are moving in the same direction. The two electrons obey the Pauli's exclusion principle — explain.

2.

a. What is first aid box?

b. The value of neutralisation enthalpy of NaOH and HF is higher than the constant value. Why? 2

c. Calculate the mass of H₂SO₄ in container A.

https://teachingbd24.com

d.	Which of the glass-ware are esstntial for quan	titative
508 12	analysis? Analyse.	4
3.	The atomic numbers of D, Q and R elements	s are 6,
_	7 and 8 respectively.	
•	What are vander waals forces?	1
		1
b.	Between CaCl ₂ and AlCl ₃ salts, which one i	s more
	water-soluble? Why?	2
c.	Hydrogen bonding is principally responsible	for the
~.	physical states of DH ₄ and H ₂ R — explain.	3
.1		nac of
a.	Analyse the reasons for the variation of sha	
	three hydride molecules of the elements men	ntionea
	in the stem.	4
4	[150-T-0.05M]	
4.	20 mL 0.1M 6mL 0.025M 150mL 0.85M H ₂ SO ₄ NaOH CH ₃ COOH	
	A B $K_a = 1.85 \times 10^{-5}$	
a.	What is green chemistry?	1
h.	How would you detect Al ³⁺ ion in a solution?	2
		2
c.	Calculate the pH of (B + C) mixture.	3
d.	Analyse the nature of the mixture $(A + B)$.	4
5. >		
	SrF_2 SrF_2	

The solubility product of SrF_2 in container A is 8×10^{-10} .

a. What is food security?

b. Which of the acids between HClO₄ and HBrO₄ is more acidic? Explain.

c. Determine the solubility of SrF₂ in container B.

d. Analyse the reasons for the variation of solubility of SrF₂ in container A and B.

a. What is vacuum distillation?

b. What do you understand by solubility product? 2

- c. Describe the method for the separation of solute from container-A.
- d. Analyse the application of chromatographic method for the solution of container B.

a. Write down the law of mass action.

b. The pH of pure water is 7.0. Why?

- c. Calculate the pH of solution of container A (Ka = 1.8 $\times 10^{-4}$).
- d. Will there be any change of pH when a small amount of HCl is added to the container C? Analyse with reasons.

8.

a. What is orbital – hybridisation?

b. Why is the first ionisation potential of nitrogen higher than that of oxygen?

c. Describe with equations the preparation of A compound from compound B.

d. Which of the compounds between A and B is more suitable for fish preservation? Analyse.

Chemistry: First Paper Subject Code **Creative Multiple Choice Questions** Full marks - 25

Time — 25 minutes

[N.B. Choose the best answer among the options. Fill the circle in the answer sheet with ball point pen. Each question has value 1.]

What is the basicity of H₃PO₂?

- a 1
- **ⓑ** 2
- © 3
- (d) 4

2. What is MSDS?

- Material Safety Data Scale
- Material Safety Data Sheet
- © Manual Service Data Sheet
- d Manual Safety Data Scale

3. Minimum volume that can be measured by burette -

- i. $0.1 \, \text{cm}^3$
- ii. $0.1 \times 10^{-3} \, \text{dm}^3$
- iii. $0.1 \times 10^{-6} \text{ m}^3$

Which one is correct?

4. 50 mL of 0.175 M HCOOH $(K_a =$ 1.8×10^{-4}) solution is added to 50 mL 0.09 M NaOH. What is the pH of the solution?

5. Unit of reaction rate -

- (a) mol L⁻¹s (b) L mol⁻¹s⁻¹
- © $\text{mol } L^{-1}s^{-1} \oplus L^2 \text{ mol}^{-2}s^{-2}$

6. Used to prepare cleaning mixture —

- i. K₂Cr₂O₇ ii. H₂SO₄
- iii. H₂O

Which one is correct?

7. In semi micro analysis, H₂S is replaced by -

- © CH3CSNH2@ CH3CSCI

Applicable to R_f value —

ratio of distances covered by

solute & solvent

- ii. ratio of distances covered by solvent and salute
- iii. the value is less than 1

Which one is correct?

9. sp³ hybridisation occurs in —

- i. BF₃
- ii. BH
- iii. H₂O

Which one is correct?

- © ii & iii
 - d i, ii & iii

10. Bohr's model is applicable to-

- (a) H+
- ⓑ He⁺
- © Li⁺
- (d) Be²⁺

11. Mixture of flour in water is called -

- (a) solution (b) colloid
- © coagulation
- d suspension

12. The best chromatographic method for the separation of components for the mixture of amino acids and carbohydrates is -

- a column
- (b) paper
- © thin layer @ gas

Give answers to question no. 13 and 14 acoording to stem:

Alkali is added to a salt solution. At first a white curly precipitate is formed which is soluble in excess alkali. On addition of NH₄Cl(s) & heating, the precipitate reappears.

13. Which ion is identified by the stem's information?

- (a) A13+
- (b) Zn²⁺
- © Ca²⁺

quantum number for the	Α Β		
outermost electron of the basic			
element according to stem?			
(a) 3, 0, 0, $-\frac{1}{2}$ (b) 3, 2, -2 , $-\frac{1}{2}$	ΔH_3 ΔH_5 ΔH_2		
© 3, 1, -1, $-\frac{1}{2}$ @ 3, 2, -1, $-\frac{1}{2}$	$C \xrightarrow{\Delta H_4} D$		
15. Which is the correct order of	21. Applicable to the stem —		
unpaired electron numbers?	i. $\Delta H_3 + \Delta H_4 = \Delta H_1 + \Delta H_2$		
ⓐ $Mn^{2+} > Fe^{2+} > Cr^{3+}$	ii. $\Delta H_1 = \Delta H_3 + \Delta H_5$		
ⓑ $Mn^{2+} > Cr^{3+} > Fe^{2+}$ ⓒ $Fe^{2+} > Cr^{3+} > Mn^{2+}$	iii. $\Delta H_4 = \Delta H_5 + \Delta H_2$		
① $Cr^{3+} > Mn^{2+} > Fe^{2+}$	Which one is correct?		
16. How many periods were there	(a) i & ii (b) ii & iii		
in Mendeleev's periodic table?	© i & ifi		
(a) 5 (b) 7	22. The main component of		
© 9 @ 12	vanishing cream —		
17. Types of bonds in the molecular	(a) caustic potash		
structure copper sulphate —	stearic acid		
	© olive oil @ carbitol		
© 2 @ 1			
© 2 @ 1 18. What type of hybridisation	23. Which enzyme is used for the		
18. What type of hybridisation occurs in Fe of XeF ₂ ?	23. Which enzyme is used for the hydrolysis of sucrose to		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar?		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential?	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase		
 18. What type of hybridisation occurs in Fe of XeF₂? a sp b sp²d c sp³d² d sp³d 19. Which order is correct for ionisation potential? a O < N < B < Be 	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase		
 18. What type of hybridisation occurs in Fe of XeF₂? a sp b sp²d c sp³d² d sp³d 19. Which order is correct for ionisation potential? a O < N < B < Be b N < O < Be < B 	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid		
 18. What type of hybridisation occurs in Fe of XeF₂? a sp b sp²d c sp³d² d sp³d 19. Which order is correct for ionisation potential? a O < N < B < Be 	 23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K_a = 1.8 × 10⁻⁵)? 		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N 20. Which of the following has the	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821 25. Which of the aqueous solution		
18. What type of hybridisation occurs in Fe of XeF ₂ ? a) sp b) sp ² d c) sp ³ d ² d) sp ³ d 19. Which order is correct for ionisation potential? a) O < N < B < Be b) N < O < Be < B c) Be < B < O < N d) B < Be < O < N 20. Which of the following has the highest melting point and	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821 25. Which of the aqueous solution of the following oxides has a		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N 20. Which of the following has the highest melting point and boiling point?	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821 25. Which of the aqueous solution		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N 20. Which of the following has the highest melting point and boiling point? (a) CaCl ₂ (b) FeCl ₂	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821 25. Which of the aqueous solution of the following oxides has a pH greater than 7.0? (a) B ₂ O ₃ (b) BeO		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N 20. Which of the following has the highest melting point and boiling point? (a) CaCl ₂ (b) FeCl ₂ (c) CuCl ₂ (d) ZnCl ₂	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (d) 11.821 25. Which of the aqueous solution of the following oxides has a pH greater than 7.0? (a) B ₂ O ₃ (b) BeO (c) P ₂ O ₅ (d) Cl ₂ O ₇		
18. What type of hybridisation occurs in Fe of XeF ₂ ? (a) sp (b) sp ² d (c) sp ³ d ² (d) sp ³ d 19. Which order is correct for ionisation potential? (a) O < N < B < Be (b) N < O < Be < B (c) Be < B < O < N (d) B < Be < O < N 20. Which of the following has the highest melting point and boiling point? (a) CaCl ₂ (b) FeCl ₂ (c) CuCl ₂ (d) ZnCl ₂	23. Which enzyme is used for the hydrolysis of sucrose to produce malt vinegar? (a) Diastase (b) Zymase (c) Maltase (d) Invertase 24. What is the pH of ethanoic acid (K _a = 1.8 × 10 ⁻⁵)? (a) 2.872 (b) 11.128 (c) 11.281 (c) 11.281 (d) 11.821 25. Which of the aqueous solution of the following oxides has a pH greater than 7.0? (a) B ₂ O ₃ (b) BeO (c) P ₂ O ₅ (d) Cl ₂ O ₇		

14. Which is the correct set of

according to the stem:

 ΔH_{1}